首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dimerization constant and single-channel conductance of Gramicidin in thylakoid membranes
Authors:Gerald Schönknecht  Gerd Althoff  Wolfgang Junge
Institution:(1) Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, D-4500 Osnabrück, Federal Republic of Germany;(2) Present address: Lehrstuhl für Botanik I der Universität Würzburg, Mittlerer Dallenbergweg 64, D-8700 Würzburg, FRG.
Abstract:Summary The effect of the pore-forming antibiotic gramicidin on pure lipid membranes is well characterized. We studied its action in protein-rich thylakoid membranes that contain less than 25% (wt/wt) acyl lipids. A transmembrane voltage was induced by flashing light, and its decay was measured and interpreted to yield the distribution of gramicidin over thylakoids, its dimerization constant and its single-channel conductance in this membrane. The distribution of gramicidin over the ensemble of thylakoids was immediately homogeneous when the antibiotic was added under stirring, while it became homogeneous only after 20 min in a stirred suspension that was initially heterogeneous. The dimerization constant, 5×1014 cm2/mol, was about 10 times larger than in pure lipid membranes. This was attributed to the upconcentration of gramicidin in the small fractional area of protein free lipid bilayer and further by a preference of gramicidin for stacked portions of the membrane. The latter bears important consequences with regard to bioenergetic studies with this ionophore. As gramicidin was largely dimerized from a concentration of 1 nm (in the suspension) on, the membrane's conductance then increased linearly as a function of added gramicidin. When the negative surface potential at the thylakoid membrane was screened, the conductance of a single gramicidin dimer agreed well with figures reported for bilayers from neutral lipid (about 0.5 pS at 10 mm NaCl). The modulation of the conductance by the surface potential in spinach versus pea thylakoids and between different preparations is discussed in detail.We would like to thank Ms. H. Kenneweg for photographs. financial support by the DFG (SFB 171/B3) is gratefully acknowledged.This paper is dedicated to the Late Prof. Peter Läger.
Keywords:photosynthesis  thylakoids  electrochromism  gramicidin  conductance  dimerization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号