首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Prostaglandin E1 or E2 inhibits an oxytocin-induced premature luteolysis in ewes when oxytocin is given early in the estrous cycle
Authors:Yoshie S Weems  John Pang  Aaron Raney  Tracie Uchima  Esther Lennon  Drew Johnson  Torrance M Nett  Ronald D Randel  Charles W Weems
Institution:1. Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, Hawaii, USA;2. College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, USA;3. Texas AgriLife Research, Texas A&M System, Overton, Texas, USA
Abstract:The objective of this study was to determine whether PGE1 or PGE2 prevents a premature luteolysis when oxytocin is given on Days 1 to 6 of the ovine estrous cycle. Oxytocin given into the jugular vein every 8 hours on Days 1 to 6 postestrus in ewes decreased (P ≤ 0.05) luteal weights on Day 8 postestrus. Plasma progesterone differed (P ≤ 0.05) among the treatment groups; toward the end of the experimental period, concentrations of circulating progesterone in the oxytocin-only treatment group decreased (P ≤ 0.05) when compared with the other treatment groups. Plasma progesterone concentrations in ewes receiving PGE1 or PGE1 + oxytocin were greater (P ≤ 0.05) than in vehicle controls or in ewes receiving PGE2 or PGE2 + oxytocin and was greater (P ≤ 0.05) in all treatment groups receiving PGE1 or PGE2 than in ewes treated only with oxytocin. Chronic intrauterine treatment with PGE1 or PGE2 also prevented (P ≤ 0.05) oxytocin decreases in luteal unoccupied and occupied LH receptors on Day 8 postestrus. Oxytocin given alone on Days 1 to 6 postestrus in ewes advanced (P ≤ 0.05) increases in PGF in inferior vena cava or uterine venous blood. PGE1 or PGE2 given alone did not affect (P ≥ 0.05) concentrations of PGF in inferior vena cava and uterine venous blood when compared with vehicle controls or oxytocin-induced PGF increases (P ≤ 0.05) in inferior vena cava or uterine venous blood. We concluded that PGE1 or PGE2 prevented oxytocin-induced premature luteolysis by preventing a loss of luteal unoccupied and occupied LH receptors.
Keywords:Corpus luteum  Progesterone  Oxytocin  PGF  PGE1  PGE2
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号