首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy
Authors:Gergely Nagy  Milán Szabó  Renáta ünnep  Gy?rgy Káli  Yuliya Miloslavina  Petar H Lambrev  Ottó Zsiros  Lionel Porcar  Peter Timmins  László Rosta  Gy?z? Garab
Institution:Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, Budapest, 1215, Hungary.
Abstract:Diatoms possess effective photoprotection mechanisms, which may involve reorganizations in the photosynthetic machinery. We have shown earlier, by using circular dichroism (CD) spectroscopy, that in Phaeodactylum tricornutum the pigment-protein complexes are arranged into chiral macrodomains, which have been proposed to be associated with the multilamellar organization of the thylakoid membranes and shown to be capable of undergoing light-induced reversible reorganizations (Szabó et al. Photosynth Res 95:237, 2008). Recently, by using small-angle neutron scattering (SANS) on the same algal cells we have determined the repeat distances and revealed reversible light-induced reorganizations in the lamellar order of thylakoids (Nagy et al. Biochem J 436:225, 2011). In this study, we show that in moderately heat-treated samples, the weakening of the lamellar order is accompanied by the diminishment of the psi-type CD signal associated with the long-range chiral order of the chromophores (psi, polymer or salt-induced). Further, we show that the light-induced reversible increase in the psi-type CD is associated with swelling in the membrane system, with magnitudes larger in high light than in low light. In contrast, shrinkage of the membrane system, induced by sorbitol, brings about a decrease in the psi-type CD signal; this shrinkage also diminishes the non-photochemical quenching capability of the cells. These data shed light on the origin of the psi-type CD signal, and confirm that both CD spectroscopy and SANS provide valuable information on the macro-organization of the thylakoid membranes and their dynamic properties; these parameters are evidently of interest with regard to the photoprotection in whole algal cells.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号