首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors
Authors:Ramadoss Dineshram  Kondethimmanahalli Chandramouli  Ginger Wai Kuen Ko  Huoming Zhang  Pei‐Yuan Qian  Timothy Ravasi  Vengatesen Thiyagarajan
Institution:1. The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Island, Hong Kong SAR, China;2. Division of Biological, Environmental Sciences & Engineering, Division of Applied Mathematics and Computer Sciences and KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia;3. Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
Abstract:The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life‐history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change‐related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ‐LC‐MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down‐regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down‐regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up‐regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.
Keywords:climate change     Crassostrea gigas     environmental proteomics     iTRAQ     multiple stressors  ocean acidification
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号