首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cold air drainage flows subsidize montane valley ecosystem productivity
Authors:Kimberly A Novick  A Christopher Oishi  Chelcy Ford Miniat
Institution:1. School of Public and Environmental Affairs, Indiana University – Bloomington, Bloomington, IN, USA;2. USDA Forest Service – Southern Research Station, Coweeta Hydrologic Laboratory, Otto, NC, USA
Abstract:In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro‐climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long‐running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional‐ and global‐scale terrestrial ecosystem models. Analyses driven by chamber‐based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud‐free (i.e., drought‐like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco‐physiological processes from macroscale climate change.
Keywords:complex terrain  drainage flows  drought  ecosystem respiration  gross ecosystem productivity  microclimate  net ecosystem exchange  net ecosystem productivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号