首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sequence-dependent dynamics of TATA-Box binding sites.
Authors:D Flatters and  R Lavery
Abstract:We have carried out two nanosecond-length molecular dynamics simulations on a DNA oligomer, d(GCGTAAAAAAAACGC)2, which contains a weak binding site for the TATA-box binding protein. An analysis of the resulting trajectories shows that this oligomer behaves differently from a related oligomer d(GCGTATATAAAACGC)2] studied earlier using the same protocol (Flatters, D., M. Young, D. L. Beveridge, and R. Lavery. 1997. Conformational properties of the TATA-box binding sequence of DNA. J. Biomol. Struct. & Dyn. 14:757-765), and which contains a strong binding site for the same protein. The two basepair mutations that relate these oligomers lead to significant changes in time-averaged structure and in dynamic behavior, which extend over entire length of the oligomer and appear to be compatible with the experimentally observed decrease of binding and functional activity. These results suggest that molecular dynamics simulations, taking into account explicit solvent and counterions, and avoiding the truncation of electrostatic interactions, are a powerful tool for investigating the indirect aspects of protein-nucleic acid recognition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号