首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissociation of m-calpain subunits occurs after autolysis of the N-terminus of the catalytic subunit, and is not required for activation.
Authors:K Nakagawa  H Masumoto  H Sorimachi  K Suzuki
Institution:Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
Abstract:Calpain is a heterodimeric, intracellular Ca(2+)-dependent, "bio-modulator" that alters the properties of substrates through site-specific proteolysis. It has been proposed that calpains are activated by autolysis of the N-terminus of the large subunit and/or its dissociation into the subunits. It is, however, unclear whether the dissociation into subunits is required for the expression of protease activity and/or for in vivo function. Recently, the crystal structure of m-calpain in the absence of Ca(2+) has been resolved. The 3D structure clearly shows that the N-terminus of the m-calpain large subunit (mCL) makes contact with the 30K subunit, suggesting that autolysis of the N-terminus of mCL changes the interaction of both subunits. To examine the relationship between autolysis, dissociation, and activation, we made and analysed a series of N-terminal mutants of mCL that mimic the autolysed forms or have substituted amino acid residue(s) interacting with 30K. As a result, the mutant m-calpains, which are incapable of autolysis, did not dissociate into subunits, whereas those lacking the N-terminal 19 residues (Delta 19), but not those lacking only nine residues (Delta 9), dissociated into subunits even in the absence of Ca(2+). Moreover, both Delta 9 and Delta 19 mutants showed an equivalent reduced Ca(2+) requirement for protease activity. These results indicate that autolysis is necessary for the dissociation of the m-calpain subunits, and that the dissociation occurs after, but is not necessary for, activation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号