首页 | 本学科首页   官方微博 | 高级检索  
   检索      


REACH Coarse-Grained Simulation of a Cellulose Fiber
Authors:Dennis C Glass  Kei Moritsugu  Xiaolin Cheng  Jeremy C Smith
Institution:UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , P.O. Box 2008 Oak Ridge, Tennessee 37831-6309, United States.
Abstract:A molecular level understanding of the structure, dynamics and mechanics of cellulose fibers can aid in understanding the recalcitrance of biomass to hydrolysis in cellulosic biofuel production. Here, a residue-scale REACH (Realistic Extension Algorithm via Covariance Hessian) coarse-grained force field was derived from all-atom molecular dynamics (MD) simulations of the crystalline Iβ cellulose fibril. REACH maps the atomistic covariance matrix onto coarse-grained elastic force constants. The REACH force field was found to reproduce the positional fluctuations and low-frequency vibrational spectra from the all-atom model, allowing elastic properties of the cellulose fibril to be characterized using the coarse-grained force field with a speedup of >20 relative to atomistic MD on systems of the same size. The calculated longitudinal/transversal Young's modulus and the velocity of sound are in agreement with experiment. The persistence length of a 36-chain cellulose microcrystal was estimated to be ~380 μm. Finally, the normal-mode analysis with the REACH force field suggests that intrinsic dynamics might facilitate the deconstruction of the cellulose fibril from the hydrophobic surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号