首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ursolic acid derivatives induce cell cycle arrest and apoptosis in NTUB1 cells associated with reactive oxygen species
Authors:Huang-Yao Tu  A-Mei Huang  Bai-Luh Wei  Kim-Hong Gan  Tzyh-Chyuan Hour  Shyh-Chyun Yang  Yeong-Shiau Pu  Chun-Nan Lin
Institution:1. Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;2. Institute of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;3. Department of Life Science, National Taitung University, Taitung 950, Taiwan;4. Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
Abstract:Twenty-three ursolic acid (1) derivatives 224 including nine new 1 derivatives 5, 711, 2022 were synthesized and evaluated for cytotoxicities against NTUB1 cells (human bladder cancer cell line). Compounds 5 and 17 with an isopropyl ester moiety at C-17-COOH and a succinyl moiety at C-3-OH showed potent inhibitory effect on growth of NTUB1 cells. Compounds 23 and 24 with seco-structures prepared from 1 also showed the increase of the cytotoxicity against NTUB1 cells. Exposure of NTUB1 to 5 (40 μM) and 23 (20 and 50 μM) for 24 h significantly increased the production of reactive oxygen species (ROS) while exposure of NTUB1 to 5 (20 and 40 μM) and 23 (20 and 50 μM) for 48 h also significantly increased the production of ROS while exposure of cells to 17 did not increase the amount of ROS. Flow cytometric analysis exhibited that treatment of NTUB1 with 5 or 17 or 23 led to the cell cycle arrest accompanied by an increase in apoptotic cell death after 24 or 48 h. These data suggest that the presentation of G1 phase arrest and apoptosis in 5- and 23-treated NTUB1 for 24 h mediated through increased amount of ROS in cells exposed with 5 and 23, respectively, while the presence of G2/M arrest before accumulation of cells in sub-G1 phase in 5-treated cells for 48 h also due to increased amount of ROS in cells exposed with 5. The inhibition of tubulin polymerization and cell cycle arrest at G2/M following by apoptosis presented in the cell cycle of 23 also mediates through the increase amount of ROS induced by treating NTUB1 with 23 for 48 h.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号