首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Caldesmon from rabbit liver: molecular weight and length by analytical ultracentrifugation
Authors:W F Stafford  A Jancso  P Graceffa
Institution:Department of Muscle Research, Boston Biomedical Research Institute, Massachusetts 02114.
Abstract:Although smooth muscle caldesmon migrates as a 140- to 150-kDa protein during sodium dodecyl sulfate-gel electrophoresis, its molecular mass is around 93 kDa as determined by sedimentation equilibrium (P. Graceffa, C-L. A. Wang, and W. F. Stafford, 1988, J. Biol. Chem. 263, 14,196-14,202). Nonmuscle caldesmon migrates during electrophoresis with a molecular mass close to 77 kDa, about half that of the muscle isoform. However, it is controversial whether the molecular weight of nonmuscle caldesmon is the same or much less than that of the muscle protein. Therefore we have now determined the molecular mass of rabbit liver caldesmon by sedimentation equilibrium and found a value of 66 +/- 2 kDa, a value much smaller than that of muscle caldesmon. This new value of the molecular weight, together with a sedimentation coefficient of 2.49 +/- 0.02 S. yields an apparent length of 53 +/- 2 nm and a diameter of 1.7 nm for the liver protein. We previously estimated a length of 74 nm and a diameter of 1.7 nm for the muscle caldesmon. We have also determined the amino acid composition of liver caldesmon and found it to be similar to that of the muscle protein. In conclusion, muscle and nonmuscle caldesmons appear to have similar overall amino acid composition and tertiary structure with the smaller nonmuscle protein having a correspondingly smaller length. The difference in molecular weight between the two caldesmons is consistent with the nonmuscle protein lacking a central peptide of the muscle isoform, as suggested by E. H. Ball, and T. Kovala, (1988, Biochemistry 27, 6093-6098).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号