首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell cycle maintenance and biogenesis of the Golgi complex
Authors:Jennifer Lippincott-Schwartz  Kristien JM Zaal
Institution:Cell Biology and Metabolism Branch, NICHD/NIH, Bethesda, MD 20892-5430, USA. jlippin@helix.nih.gov
Abstract:How organelle identity is established and maintained, and how organelles divide and partition between daughter cells, are central questions of organelle biology. For the membrane-bound organelles of the secretory and endocytic pathways including the endoplasmic reticulum (ER), Golgi complex, lysosomes, and endosomes], answering these questions has proved difficult because these organelles undergo continuous exchange of material. As a result, many "resident" proteins are not localized to a single site, organelle boundaries overlap, and when interorganellar membrane flow is interrupted, organelle structure is altered. The existence and identity of these organelles, therefore, appears to be a product of the dynamic processes of membrane trafficking and sorting. This is particularly true for the Golgi complex, which resides and functions at the crossroads of the secretory pathway. The Golgi receives newly synthesized proteins from the ER, covalently modifies them, and then distributes them to various final destinations within the cell. In addition, the Golgi recycles selected components back to the ER. These activities result from the Golgi's distinctive membranes, which are organized as polarized stacks (cis to trans) of flattened cisternae surrounded by tubules and vesicles. Golgi membranes are highly dynamic despite their characteristic organization and morphology, undergoing rapid disassembly and reassembly during mitosis and in response to perturbations in membrane trafficking pathways. How Golgi membranes fragment and disperse under these conditions is only beginning to be clarified, but is central to understanding the mechanism(s) underlying Golgi identity and biogenesis. Recent work, discussed in this review, suggests that membrane recycling pathways operating between the Golgi and ER play an indispensable role in Golgi maintenance and biogenesis, with the Golgi dispersing and reforming through the intermediary of the ER both in mitosis and in interphase when membrane cycling pathways are disrupted.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号