首页 | 本学科首页   官方微博 | 高级检索  
     


System-specific O2 sensitivity of the tandem pore domain K+ channel TASK-1
Authors:Johnson Rosalyn P  O'Kelly Ita M  Fearon Ian M
Affiliation:Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada L8S 4K1.
Abstract:Hypoxic inhibition of TASK-1, a tandem pore domain background K+ channel, provides a critical link between reduced O2 levels and physiological responses in various cell types. Here, we examined the expression and O2 sensitivity of TASK-1 in immortalized adrenomedullary chromaffin (MAH) cells. In physiological (asymmetrical) K+ solutions, 3 µM anandamide or 300 µM Zn2+ inhibited a strongly pH-sensitive current. Under symmetrical K+ conditions, the anandamide- and Zn2+-sensitive K+ currents were voltage independent. These data demonstrate the functional expression of TASK-1, and cellular expression of this channel was confirmed by RT-PCR and Western blotting. At concentrations that selectively inhibit TASK-1, anandamide and Zn2+ were without effect on the magnitude of the O2-sensitive current or the hypoxic depolarization. Thus TASK-1 does not contribute to O2 sensing in MAH cells, demonstrating the failure of a known O2-sensitive K+ channel to respond to hypoxia in an O2-sensing cell. These data demonstrate that, ultimately, the sensitivity of a particular K+ channel to hypoxia is determined by the cell, and we propose that this is achieved by coupling distinct hypoxia signaling systems to individual channels. Importantly, these data also reiterate the indirect O2 sensitivity of TASK-1, which appears to require the presence of an intracellular mediator. hypoxia; background K+ channels; TASK-1; MAH cells
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号