Identification of ligand-binding site III on the immunoglobulin-like domain of the granulocyte colony-stimulating factor receptor |
| |
Authors: | Layton J E Hall N E Connell F Venhorst J Treutlein H R |
| |
Affiliation: | Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch and the Cooperative Research Centre for Cellular Growth Factors, Parkville, Victoria 3050, Australia. Judy.Layton@ludwig.edu.au |
| |
Abstract: | The granulocyte colony-stimulating factor receptor (G-CSF-R) forms a tetrameric complex with G-CSF containing two ligand and two receptor molecules. The N-terminal Ig-like domain of the G-CSF-R is required for receptor dimerization, but it is not known whether it binds G-CSF or interacts elsewhere in the complex. Alanine scanning mutagenesis was used to show that residues in the Ig-like domain of the G-CSF-R (Phe(75), Gln(87), and Gln(91)) interact with G-CSF. This binding site for G-CSF overlapped with the binding site of a neutralizing anti-G-CSF-R antibody. A model of the Ig-like domain showed that the binding site is very similar to the viral interleukin-6 binding site (site III) on the Ig-like domain of gp130, a related receptor. To further characterize the G-CSF-R complex, exposed and inaccessible regions of monomeric and dimeric ligand-receptor complexes were mapped with monoclonal antibodies. The results showed that the E helix of G-CSF was inaccessible in the dimeric but exposed in the monomeric complex, suggesting that this region binds to the Ig-like domain of the G-CSF-R. In addition, the N terminus of G-CSF was exposed to antibody binding in both complexes. These data establish that the dimerization interface of the complete receptor complex is different from that in the x-ray structure of a partial complex. A model of the tetrameric G-CSF.G-CSF-R complex was prepared, based on the viral interleukin-6.gp130 complex, which explains these and previously published data. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|