首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Relationships between soil microbial properties and aboveground stand characteristics of conifer forests in Oregon
Authors:David D Myrold  Pamela A Matson  David L Peterson
Institution:(1) Department of Soil Science, Oregon State University, Corvallis, OR 97331, USA;(2) NASA Ames Research Center, Moffett Field, CA 94035, USA
Abstract:Eight forest sites representing a large range of climate, vegetation, and productivity were sampled in a transect across Oregon to study the relationships between aboveground stand characteristics and soil microbial properties. These sites had a range in leaf area index of 0.6 to 16 m2 m–2 and net primary productivity of 0.3 to 14 Mg ha–1 yr–1.Measurements of soil and forest floor inorganic N concentrations and in situ net N mineralization, nitrification, denitrification, and soil respiration were made monthly for one year. Microbial biomass C and anaerobic N mineralization, an index of N availability, were also measured. Annual mean concentrations of NH 4 + ranged from 37 to 96 mg N kg–1 in the forest floor and from 1.7 to 10.7 mg N kg–1 in the mineral soil. Concentrations of NO 3 were low ( < 1 mg N kg–1) at all sites. Net N mineralization and nitrification, as measured by the buried bag technique, were low on most sites and denitrification was not detected at any site. Available N varied from 17 to 101 mg N kg–1, microbial biomass C ranged from 190 to 1230 mg Ckg–1, and soil respiration rates varied from 1.3 to 49 mg C kg–1 day–1 across these sites. Seasonal peaks in NH 4 + concentrations and soil respiration rates were usually observed in the spring and fall.The soils data were positively correlated with several aboveground variables, including leaf area index and net primary productivity, and the near infrared-to-red reflectance ratio obtained from the airborne simulator of the Thematic Mapper satellite. The data suggest that close relationships between aboveground productivity and soil microbial processes exist in forests approaching semi-equilibrium conditions.Abbreviations IR infrared - LAI leaf area index - k c proportion of microbial biomass C mineralized to CO2 - NPP net primary productivity - TM Thematic Mapper
Keywords:forest soils  leaf area index  microbial biomass  net primary productivity  nitrogen availability  nitrogen cycling  remote sensing  soil respiration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号