首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions
Authors:Narendranath Mohanty  Imre Vass  Sándor Demeter
Institution:School of Life-Sciences, Jawaharlal Nehru Univ., New Delhi 110067, India;Inst. of Plant Physiology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary.
Abstract:The toxicity of heavy metals on photosystem 2 photochemistry, was investigated by monitoring Hill activity, fluorescence, and thermoluminescence properties of photosystem 2 (PS 2) in pea (Pisum sativum L. cv. Bombay) chloroplasts. In Co2+-, Ni2+- or Zn2+-treated chloroplasts 2,6-dichlorophenolindophenol-Hill activity was markedly inhibited. Addition of hydroxylamine which donates electrons close to PS 2 reaction center did not restore the PS 2 activity. Co2+-, Ni2+ or Zn2+ also inhibited PS 2 activity supported by hydroxylamine in tris (hydroxymethyl)aminomethane (Tris)-inactivated chloroplasts. These observations were confirmed by fluorescence transient measurements. This implies that the metal ions inhibit either the reaction center or the components of PS 2 acceptor side. Flash-induced thermoluminescence studies revealed that the S2Q?A charge recombination was insensitive to metal ion addition. The S2Q?B charge recombination, however, was inhibited with increase in the level of Co2+, Ni2+ or Zn2+. The observed sensitivity of S2?B charge recombination in comparison to the stability of S2Q?A recombination suggests that the metal ions inhibit at the level of secondary quinone electron acceptor. QB. We suggest that Co2+, Ni2+ or Zn2+ do not block the electron flow between the primary and secondary quinone electron acceptor, but possibly, directly modify QB site, leading to the loss of PS 2 activity.
Keywords:Cobalt  metal ion toxicity  nickel photosystem 2  thermoluminescence  zinc
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号