Synthesis of new class dipeptide analogues with improved permeability and antithrombotic activity |
| |
Authors: | Zhao Ming Bi Lanrong Bi Wei Wang Chao Yang Zhe Ju Jingfang Peng Shiqi |
| |
Affiliation: | College of Pharmaceutical Sciences, Capital University of Medical Sciences, Beijing, 100054, PR China. |
| |
Abstract: | 3-(S)-1,2,3,4-Tetrahydro-beta-carboline-3-carboxylic acid isolated from A. Chinese G. Don was found to possess moderate anti-aggregation activity, but with poor bioavailability. To improve its pharmacological property, we designed and synthesized a series of novel dipeptide analogues by incorporating tetrahydro-beta-carboline-3-carboxylic acid skeleton as an amino acid surrogate (*Trp). It turned out these dipeptide analogues exhibited good membrane permeability based on in vitro Caco-2 cell monolayers permeability assay. As a result, the overall biological properties of these molecules were significantly improved depending on the nature of the amino acid residues introduced onto the 3-position of the tetrahydro-beta-carboline moiety. It was very interesting to notice that these dipeptide analogues (5b,c,h,i,n,o,p,q) displayed a remarkable dual antiaggregatory activity in both of ADP- and PAF-induced platelet aggregation assay, and their aggregation response was significantly higher than that of aspirin (p<0.01). In addition, these dipeptide analogues were observed for the dose-dependent antithrombotic effect using in vivo rat arterial thrombosis model. The potency of antithrombotic activity of 5h,i,n,p was significantly higher than that of aspirin (n=12, p<0.01) at equal dose (5 micromol/kg). |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|