首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic Analysis of Maize Root Characteristics in Response to Low Nitrogen Stress
Authors:Liang Chun  Guohua Mi  Jiansheng Li  Fanjun Chen  Fusuo Zhang
Institution:(1) Key Lab of Plant–Soil Interaction, College of Resources and Environmental Sciences, P R China;(2) College of Agronomy and Biotechnique, China Agricultural University, 100094 Beijing, PR China
Abstract:Under low-input cropping systems, nitrogen (N) can be a limiting factor in plant growth and yield. Identifying genotypes that are more efficient at capturing limited N resources and the traits and mechanisms responsible for this ability is important. Root trait has a substantial influence on N acquisition from soils. Nevertheless, inconsistencies still exist as to the effect of low N on root length and its architecture in terms of lateral and axial roots. For maize, a crop utilizing heterosis, little is known about the relationship between parents and their crosses in the response of root architecture to N availability. Here 7 inbred maize lines and 21 of their crosses created by diallel mating were used to study the effect of N stress on root morphology as well as the relationship between the inbreds and their crosses. With large genotypic differences, low N generally suppresses shoot growth and increases the root to shoot ratio with or without increasing root biomass in maize. Maize plants responded to N deficiency by increasing total root length and altering root architecture by increasing the elongation of individual axial roots and enhancing lateral root growth, but with a reduction in the number of axial roots. Here, the inbreds showed weaker responses in root biomass and other root parameters than their crosses. Heterosis of root traits was significant at both N levels and was attributed to both the general combining ability (GCA) and special combining ability (SCA). Low N had substantial affects on the pattern of heterosis, GCA and SCA affects on root traits for each of the crosses suggesting that selection under N stress is necessary in generating low N-tolerant maize genotypes.
Keywords:GCA  maize (Zea Mays L  )  nitrogen  root morphology  SCA
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号