首页 | 本学科首页   官方微博 | 高级检索  
     


Anti‐hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species
Authors:Myrna Adianti  Chie Aoki  Mari Komoto  Lin Deng  Ikuo Shoji  Tutik Sri Wahyuni  Maria Inge Lusida  Soetjipto  Hiroyuki Fuchino  Nobuo Kawahara  Hak Hotta
Affiliation:1. Division of Microbiology, Kobe University Graduate School of Medicine, , Chuo‐ku, Kobe, 650‐0017;2. Institute of Tropical Disease, Airlangga University, , Surabaya, 60115;3. Japan Science and Technology/Japan International Cooperation Agency Science and Technology Research Partnership for Sustainable Development Laboratory (JST/JICA SATREPS), Faculty of Medicine, University of Indonesia, , Jakarta, 10430 Indonesia;4. Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, , Tsukuba City, Ibaraki Prefecture, 305‐0843 Japan
Abstract:Development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still much needed from clinical and economic points of view. Antiviral substances obtained from medicinal plants are potentially good targets to study. Glycyrrhiza uralensis and G. glabra have been commonly used in both traditional and modern medicine. In this study, extracts of G. uralensis roots and their components were examined for anti‐HCV activity using an HCV cell culture system. It was found that a methanol extract of G. uralensis roots and its chloroform fraction possess anti‐HCV activity with 50%‐inhibitory concentrations (IC50) of 20.0 and 8.0 μg/mL, respectively. Through bioactivity‐guided purification and structural analysis, glycycoumarin, glycyrin, glycyrol and liquiritigenin were isolated and identified as anti‐HCV compounds, their IC50 being 8.8, 7.2, 4.6 and 16.4 μg/mL, respectively. However, glycyrrhizin, the major constituent of G. uralensis, and its monoammonium salt, showed only marginal anti‐HCV activity. It was also found that licochalcone A and glabridin, known to be exclusive constituents of G. inflata and G. glabra, respectively, did have anti‐HCV activity, their IC50 being 2.5 and 6.2 μg/mL, respectively. Another chalcone, isoliquiritigenin, also showed anti‐HCV activity, with an IC50 of 3.7 μg/mL. Time‐of‐addition analysis revealed that all Glycyrrhiza‐derived anti‐HCV compounds tested in this study act at the post‐entry step. In conclusion, the present results suggest that glycycoumarin, glycyrin, glycyrol and liquiritigenin isolated from G. uralensis, as well as isoliquiritigenin, licochalcone A and glabridin, would be good candidates for seed compounds to develop antivirals against HCV.
Keywords:antiviral substance  coumarin  hepatitis C virus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号