Stereochemistry and lifetime of the GTP hydrolysis intermediate at the active site of elongation factor Tu from Bacillus stearothermophilus as inferred from the 17O-55Mn superhyperfine interaction |
| |
Authors: | H R Kalbitzer J Feuerstein R S Goody A Wittinghofer |
| |
Affiliation: | Max-Planck-Institute for Medical Research, Department of Biophysics, Heidelberg, Federal Republic of Germany. |
| |
Abstract: | Electron paramagnetic resonance spectroscopy has been used to obtain information on the structure and stability of the products of GTP cleavage at the active site of elongation factor Tu (EF-Tu) from Bacillus stearothermophilus. Using stereospecifically labelled (Sp)-(Rp)-[beta-17O]GTP (prepared by modification of a previously published procedure which is now also suitable for guanine nucleotides), it was found that only one of the two possible diastereomers (Sp) led to detectable line-broadening of the EPR spectrum of Mn2+ at the active site of EF-Tu (linewidth 1.5 mT), whereas the Rp isomer caused the same linewidth as unlabelled nucleotide (1.3 mT). From our earlier work and from a demonstration that the lifetime of the state giving the broadened spectrum is too long to be assigned to the EF-Tu.GDP.Mn complex [the rate constant for decay as measured by displacement of GDP by the fluorescent 2'(3')-O-(N-methylanthraniloyl)-GDP is 6.2 x 10(-3) s-1 at 25 degrees C and pH 6.8], we conclude that the broadened signal arises from the EF-Tu.Mn.GDP.Pi complex, the predominant steady-state species. During the hydrolysis of GTP the Mn2+ remains bound to the beta-phosphate oxygen of GDP which arises from the beta pro-S oxygen of GTP, possibly until GDP dissociates and certainly until Pi dissociates. Addition of elongation factor Ts (EF-Ts) to this intermediate leads to rapid reduction of the linewidth to that expected for random distribution of interactions of one 17O and two 16O atoms of GDP with Mn2+, and is not distinguishable from that exhibited by (Rp)-[beta-17O]GTP in the corresponding complex in the presence of EF-Ts. |
| |
Keywords: | |
|
|