首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Apoplastic calmodulin promotes self-incompatibility pollen tube growth by enhancing calcium influx and reactive oxygen species concentration in Pyrus pyrifolia
Authors:Xueting Jiang  Yongbin Gao  Hongsheng Zhou  Jianqing Chen  Juyou Wu  Shaoling Zhang
Institution:1. College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
Abstract:

Key message

This study indicated that Ca 2+ , ROS and actin filaments were involved with CaM in regulating pollen tube growth and providing a potential way for overcoming pear self-incompatibility.

Abstract

Calmodulin (CaM) has been associated with various physiological and developmental processes in plants, including pollen tube growth. In this study, we showed that CaM regulated the pear pollen tube growth in a concentration-dependent bi-phasic response. Using a whole-cell patch-clamp configuration, we showed that apoplastic CaM induced a hyperpolarization-activated calcium ion (Ca2+) current, and anti-CaM largely inhibited this type of Ca2+ current. Moreover, upon anti-CaM treatment, the reactive oxygen species (ROS) concentration decreased and actin filaments depolymerized in the pollen tube. Interestingly, CaM could partially rescue the inhibition of self-incompatible pear pollen tube growth. This phenotype could be mediated by CaM-enhanced pollen plasma membrane Ca2+ current, tip-localized ROS concentration and stabilized actin filaments. These data indicated that Ca2+, ROS and actin filaments were involved with CaM in regulating pollen tube growth and provide a potential way for overcoming pear self-incompatibility.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号