首页 | 本学科首页   官方微博 | 高级检索  
     


Use of pteridine nucleoside analogs as hybridization probes
Authors:Hawkins Mary E  Balis Frank M
Affiliation:Pediatric Oncology Branch, National Cancer Institute, NIH, 10/13C116, 10 Center Drive, Bethesda, MD 20892, USA. mh100x@nih.gov
Abstract:The pteridine nucleoside analog 3-methyl isoxanthopterin (3-MI) is highly fluorescent, with a quantum yield of 0.88, and it can be synthesized as a phosphoramidite and incorporated into oligonucleotides through a deoxyribose linkage. Within an oligonucleotide, 3-MI is intimately associated with native bases and its fluorescence is variably quenched in a sequence-dependent manner. Bend ing, annealing, binding, digestion or cleavage of fluorophore-containing oligonucleotides can be detected by monitoring changes in fluorescence properties. We developed a single step method for detecting annealing of complementary DNA sequences using 3-MI-containing oligonucleotides as hybridization probes. One of the complementary strands contains the fluorophore as an insertion and when annealing occurs, the fluorophore bulges out from the double strand, resulting in increased fluorescence intensity. We have examined the sequence dependency, optimal strand length and impact of multiple fluorophores per strand in terms of brightness and impact on the annealing process. We describe the application of this technique to the detection of positive PCR products using an HIV-1 detection system. This sequence-dependent hybridization technique can result in fluorescence intensity increases of up to 27-fold. Fluorescence intensity increases are only seen upon specific binding to bulge-generating complements, removing issues of high background from non-specific binding.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号