首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular Modeling of Lipid Membrane Curvature Induction by a Peptide: More than Simply Shape
Authors:Alexander?J Sodt  Richard?W Pastor
Institution:National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland
Abstract:Molecular dynamics simulations of an amphipathic helix embedded in a lipid bilayer indicate that it will induce substantial positive curvature (e.g., a tube of diameter 20 nm at 16% surface coverage). The induction is twice that of a continuum model prediction that only considers the shape of the inclusion. The discrepancy is explained in terms of the additional presence of specific interactions described only by the molecular model. The conclusion that molecular shape alone is insufficient to quantitatively model curvature is supported by contrasting molecular and continuum models of lipids with large and small headgroups (choline and ethanolamine, respectively), and of the removal of a lipid tail (modeling a lyso-lipid). For the molecular model, curvature propensity is analyzed by computing the derivative of the free energy with respect to bending. The continuum model predicts that the inclusion will soften the bilayer near the headgroup region, an effect that may weaken curvature induction. The all-atom predictions are consistent with experimental observations of the degree of tubulation by amphipathic helices and variation of the free energy of binding to liposomes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号