首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heavy riboflavin synthase from Bacillus subtilis. Quaternary structure and reaggregation
Authors:A Bacher  H C Ludwig  H Schnepple  Y Ben-Shaul
Abstract:Heavy riboflavin synthase of Bacillus subtilis was purified by a simplified procedure. The enzyme is a complex protein containing about 3 alpha-subunits (23.5 X 10(3) Mr) and 60 beta-subunits (16 X 10(3) Mr). The 10(6) Mr protein dissociates upon exposure to pH values above neutrality. Phosphate ions increase the stability at neutral pH. The dissociation induced by exposure of the enzyme to elevated pH is reversible in phosphate buffer at neutral pH. The stability of the enzyme at elevated pH values is greatly enhanced by the substrate analogue, 5-nitroso-6-ribitylamino-2,4(1H, 3H)-pyrimidinedione. Electron micrographs of negatively stained enzyme specimens show spherical particles with a diameter of 15.6 nm. Various immunochemical methods show that the alpha-subunits are not accessible to antibodies in the native molecule. The native enzyme is not precipitated by anti-alpha-subunit serum, and riboflavin synthase activity is not inhibited by the serum. However, these tests become positive at pH values that lead to dissociation of the enzyme. Subsequent to dissociation of the native enzyme at elevated pH values, the beta-subunits form high molecular weight aggregates. These aggregates form a complex mixture of different molecular species, which sediment at velocities of about 48 S and 70 S. The average molecular weight was approximately 5.6 X 10(6). Homogeneous preparations have not been obtained. Electron micrographs show hollow, spherical vesicles with diameters of about 29 nm. The substrate analogue 5-nitroso-6-ribitylamino-2,4(1H, 3H)-pyrimidinedione can induce the reaggregation of isolated beta-subunits with formation of smaller molecules, which are structurally similar to native riboflavin synthase. A homogeneous preparation of reaggregated molecules was obtained by renaturation of beta-subunits from 6.4 M-urea in the presence of the ligand. The sedimentation velocity of this aggregate is about 7% smaller than that of the native enzyme. The molecular weight is 96 X 10(4). Electron micrographs show spherical particles with a diameter of about 17.4 nm. Inspection of the micrographs tentatively suggests the presence of a central cavity. It appears likely that these molecules, which are devoid of alpha-subunits, have the same number and spatial arrangement of beta-subunits as the native enzyme. All data are consistent with the hypothesis that the native enzyme consists of a central core of alpha-subunits surrounded by a capsid-like arrangement of beta-subunits. The number of beta-subunits and the shape of the protein suggest a capsid-like arrangement of beta-subunits.(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号