首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phenyl N-Tert-Butyl Nitrone Forms Nitric Oxide as a Result of Its Fe(Iii)-Catalyzed Hydrolysis Or Hydroxyl Radical Adduct Formation
Authors:Walee Chamulitrat  Carol E Parker  Kenneth B Tomer  Ronald P Mason
Institution:  a Laboratory of Molecular Biophysics, National Institute of Environmental Health, Sciences, National Institutes of Health, Research Triangle Park, NC, USA
Abstract:Phenyl N-tert-butyl nitrone (PBN) is commonly employed in spin-trapping studies. We report here evidence that PBN in aqueous solutions is decomposed by two pathways leading to the generation of nitric oxide ('NO). The first pathway is by hydrolysis of PBN, which is strongly catalyzed by ferric iron. The second pathway is via PBN-hydroxyl radical adduct formation. NO was trapped in the presence of cysteine and ferrous iron to form a (cys)2 Fe(NO)2] -3 complex, which was measured by use of electron paramagnetic resonance (EPR) spectroscopy. A concomitant metabolite, benzaldehyde, was detected from both reaction mixtures. We propose that PBN is hydrolyzed by Fe3+ or attacked by hydroxyl radical, leading eventually to a common transient species, tert-butyl hydronitroxide t-BuN(O')H], which is further oxidized to a 'NO source, t-BuNO. Our data imply that PBN may decompose to 'NO when used in biological models with oxidative stress conditions.
Keywords:Spin traps  nitric oxide  EPR  nitrosyl-iron complexes  nitrones  hydroxylamines
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号