首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cloning, in silico characterization and interaction of cysteine protease and cystatin for establishing their role in early blight disease in tomato
Authors:Manoj Singh  Deepti Bhogal  Anshita Goel  Anil Kumar
Institution:1. Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, 263 145, U.S. Nagar, India
Abstract:Cysteine protease (CP) and Cysteine protease inhibitor (CPI) or cystatin constitute a critical point in programmed cell death (PCD), a basic biological phenomenon which takes place in the plants, when they are exposed to varying biotic and abiotic stresses. In the present study we isolated and cloned cDNAs encoding cysteine protease and cystatin from early blight infected tomato plants. Using computational biology tools the sequence-structure-function relationships for the tomato cystatin and cysteine protease were elucidated. Interaction between the cystatin and cysteine protease of host and pathogen is higher as compared to interaction shown by cystatin and cysteine protease within the host. The interaction energy of (a)tomato cystatin—tomato cysteine protease, (b)tomato cystatin—fungal cysteine protease and (c)tomato cysteine protease—fungal cystatin are ?319.33 Kcal/mol, ?504.71 Kcal/mol and ?373.731 Kcal/mol respectively. Comparative protein sequence analysis with different plant cystatins and cysteine protease were also done with the sequences of cystatin and cysteine protease isolated from tomato. Structures for all the cystatin and cysteine protease were modeled along with their interactions with fungal cystatin and cysteine protease in order to explore the structural variability and its manifestation at the functional level. This helped to relate the already known functions of these proteins with their sequences as well as the predicted structures. This also served to better understand the CP-CPI interaction operational in developing this protein family and its implication in plant defense during fungal pathogenesis in tomato plants.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号