首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular extensibility of mini-dystrophins and a dystrophin rod construct
Authors:Bhasin Nishant  Law Richard  Liao George  Safer Daniel  Ellmer Jennifer  Discher Bohdana M  Sweeney H Lee  Discher Dennis E
Institution:Pennsylvania Muscle Institute and Graduate Groups in Physics and Cell & Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Abstract:Muscular dystrophies arise with various mutations in dystrophin, implicating this protein in force transmission in normal muscle. With 24 three-helix, spectrin repeats interspersed with proline-rich hinges, dystrophin's large size is an impediment to gene therapy, prompting the construction of mini-dystrophins. Results thus far in dystrophic mice suggest that at least one hinge between repeats is necessary though not sufficient for palliative effect. One such mini-dystrophin is studied here in forced extension at the single molecule level. Delta2331 consists of repeats (R) and hinges (H) H1-R1-2 approximately H3 approximately R22-24-H4 linked by native (-) and non-native (approximately) sequence. This is compared to its core fragment R2 approximately H3 approximately R22 as well as an eight-repeat rod fragment middle (RFM: R8-15). We show by atomic force microscopy that all repeats extend and unfold at forces comparable to those that a few myosin molecules can generate. The hinge regions most often extend and transmit force while limiting tandem repeat unfolding. From 23-42 degrees C, the dystrophin constructs also appear less temperature-sensitive in unfolding compared to a well-studied betaI-spectrin construct. The results thus reveal new modes of dystrophin flexibility that may prove central to functions of both dystrophin and mini-dystrophins.
Keywords:dystrophin  spectrin  AFM  protein folding  hinge
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号