首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acclimation of stream-bed heterotrophic microflora: metabolic responses to dissolved organic matter
Authors:LOUIS A KAPLAN  THOMAS L BOTT
Institution:Stroud Water Research Center, Academy of Natural Sciences of Philadelphi, Avondale, Pennsylvania, U.S.A.
Abstract:SUMMARY.
  • 1 Studies were performed to assess the acclimation of the stream-bed heterotrophic microflora to sources of dissolved organic matter (DOM) typical of its environment and microfloral responses to pulses of DOM.
  • 2 Microcosm measurements of dissolved organic carbon (DOC) uptake, dissolved oxygen uptake. ATP concentration and epitluorescence microscopic counts (EMC) were performed using stream-bed sediments and heterogeneous dissolved organic matter (DOM) sources.
  • 3 Three study sites included an undisturbed woodlot spring seep, a small stream traversing a cattle pasture and a larger stream draining a catchment used for silage crops, pastures and woodlands.
  • 4 The DOM sources were cold water extracts of forest floor leaf litter, bovine manure, the green alga Ulothrix and jewel weed (Impaliens capensis L.) leaves.
  • 5 DOC uptake occurring in 2.5–5.0 h incubations indicated an acclimation of the microflora at each site to DOM sources generated by surrounding land use.
  • 6 The sediment microflora from the larger stream did not readily metabolize bovine manure DOM and the latter was used in an acclimation experiment.
  • 7 A minimum of 48 h of cumulative exposure to bovine manure DOM at 15–20°C were required to yield measurable changes in sediment microbial activity of sediment microbial biomass.
  • 8 The same microflora retained an ability to readily metabolize the added DOM source after 72 h of exposure to unamended stream water.
  • 9 The time frame of microfloral responses during acclimation indicated that changes leading to the metabolism of a DOM source were initially enzymatic and eventually involved growth and selection for specific decomposers within the microbial community.
  • 10 We conclude that in order to utilize naturally occurring pulses of carbon and energy, stream-bed heterotrophs must be already enzymatically prepared, induced, when the pulse occurs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号