首页 | 本学科首页   官方微博 | 高级检索  
     


The Potential of Photochemical Transition Metal Reactions in Prebiotic Organic Synthesis. I. Observed Conversion of Methanol into Ethylene Glycol as Possible Prototype for Sugar Alcohol Formation
Authors:Eisch  John J.  Munson  Peter R.  Gitua  John N.
Affiliation:Department of Chemistry, The State University of New York at Binghamton, Binghamton, NY 13902-6000, USA. jjeisch@binghamton.edu
Abstract:Photochemical processes involving redox reactions between metal ions and organic substrates possess the versatile potential for having harnessed solar energy for prebiotic organic synthesis. The present study in our Laboratory has shown that ultraviolet irradiation of transition metal ions such as of Ni, Co, Fe, Cu and Ti dissolved in primary or secondary alcohols causes photoreduction of the metal ions with the concomitant oxidation of the alcohol to aldehyde or ketone. An observed accompaniment of this novel 'light' reaction has been the known 'dark' pinacol reaction, whereby the carbonyl derivative underwent bimolecular coupling to the diol by the photogenerated reduced transition metal reagent. These tandem 'light-dark' processes possess the potential for the stepwise synthesis of dimeric 1,2-diols from simpler alcohols under conditions that might have prevailed on the prebiotic earth. Experiments reported here have demonstrated that such a tandem 'light-dark' conversion of methanol into ethylene glycol, via formaldehyde, does in fact occur, when nickel(II) acetylacetonate solutions in methanol undergo prolonged irradiation at 185-254 nm. Since ethylene glycol can be considered as the simplest sugar alcohol, these findings may provide novel insight into the prebiotic oligomerization of formaldehyde into higher sugar alcohols or even sugars.
Keywords:formaldehyde oligomerization  metal- and light-mediated redox reactions  prebiotic synthesis of sugars and sugar alcohols  photochemical oxidation  transition metal reductions of carbonyl derivatives
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号