首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Studies of the role of catalytic and conformational metals in producing enzymatic activity in yeast enolase
Authors:John M Brewer  Kim M Collins
Institution:Department of Biochemistry, University of Georgia USA
Abstract:Spectrophotometric titrations of yeast apoenolase with magnesium, the metal that produces the highest level of activity, nickel, which produces a very low level, and calcium, which produces no activity, suggest strong binding of 2 mol (1 per subunit) of all three metals at the same sites, called “conformational” sites. About two-thirds of the possible absorbance change in the chromophoric competitive inhibitor 3-aminoenolpyruvate-2-phosphate (AEP) that occurs when it binds to the enzyme in the presence of saturating levels of magnesium is produced when just 2 mol (1 per subunit) of magnesium is added. Since additional “catalytic” metal won't bind unless the AEP does, and the AEP won't bind unless the “conformational” sites are filled with metal, much of the absorbance change in the AEP must be produced by conformational metal.Metals that do not produce enzymatic activity do not produce the absorbance change in AEP whereas metals that permit any level of enzymatic activity produce the same absorbance change that magnesium does-the reaction is “all or none.” Studies of the effect of calcium, nickel, and magnesium on the CD spectrum of apoenzyme-AEP solutions suggest that activating metals produce an asymmetric chromophore in the AEP. This is interprested as indicating the chromophore in AEP bound to enzyme in the presence of an activating metal is a twisted carbon-carbon double bond.Calorimetric studies show the competitive inhibitor 3-phosphoglycerate binds to the calcium- and magnesium-enzyme with about the same change in enthalpy. The substrate or AEP reduces the rate of the apparent reaction of the calcium- or magnesium-enzyme with excess EDTA, suggesting that both substrate and AEP bind to the calcium-enzyme. The interpretation of these data is that the conformational metal plays a crucial role in activating the substrate while the catalytic metal controls the reaction rate. This interpretation is supported by experiments in which an enzyme with one type of conformational metal is reacted in the stopped-flow with catalytic metal and substrate. If an activating metal is the conformational metal, the initial activity is greater.
Keywords:Address reprint requests to: John M  Brewer  Department of Biochemistry  University of Georgia  Athens  GA 30602  USA
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号