首页 | 本学科首页   官方微博 | 高级检索  
   检索      


THE FUNCTIONAL ORGANIZATION OF FILTRATION NEPHRIDIA
Authors:EDWARD E RUPPERT  PETER R SMITH
Institution:Department of Biological Sciences, Clemson University, Clemson, S.C. 29634 1903
Abstract:(1) Based on the classical studies of Goodrich, protonephridia are believed to be phylogenetic antecedents of metanephridia. It is argued here that the primary factor determining the type of nephridium expressed is body size rather than phylogenetic status. (2) The proposed model defines a nephridium functionally and predicts two general configurations for filtration nephridia in animals. (3) Application of the model to metanephridial and protonephridial systems indicates differences in the sites of ultrafiltration and mechanisms of pressure generation. (4) Metanephridial systems function by muscle-mediated filtration of vascular fluid into a coelomic space before modification by an excretory duct. (5) Protonephridial systems function by cilia-mediated filtration of extracellular fluid into the lumen of a protonephridial terminal cell before modification in an adjoining duct. (6) The model predicts a correlation between animals with blood vessels and metanephridia, and animals without blood vessels and protonephridia. The correlation is shown to be nearly perfect. (7) Exceptions to the model are discussed. (8) Original experimental evidence is given for the permeability of the protonephridial terminal cell to iron dextran and its reabsorption by the protonephridial duct in the polychaete, Glycera dibranchiata. (9) Experimental data for proto- and metanephridial systems are summarized and shown to support the proposed model. (10) The ultrastructure of the exceptional amphioxus ‘protonephridium’ is reviewed and original data are presented. Its organization is structurally and perhaps functionally intermediate between proto- and metanephridial systems. (11) An original ultrastructural comparison is made of monociliated nitration cells in a size range of larval invertebrates from five phyla. Filtration cells that are structurally intermediate between protonephridial solenocytes and metanephridial podocytes are noted in larvae intermediate in body size between the two extremes. The comparative data suggest that (i) podocytes and solenocytes are homologous cells and (ii) that body size is correlated with which of the two designs is expressed. (12) The fates of larval podocytes are followed through metamorphosis in three species. The results confirm the equivalence of podocytes and solenocytes as suggested by the comparative analysis. They further indicate that which morph is expressed is a function of body design factors discussed in the model. (13) Protonephridia are believed to be primitive to metanephridia because they occur in presumably primitive animals and in ontogenetic stages of many animals with metanephridia as adults. It is suggested here that the distribution of protonephridia is related to small body size and the lack of blood vessels, regardless of phylogenetic status. The occurrence of protonephridia in the larvae of species with metanephridia as adults is explained similarly as a function of the small larval size and lack of blood vessels.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号