首页 | 本学科首页   官方微博 | 高级检索  
     


Site-specific deoxynucleotide substitutions in yeast U6 snRNA block splicing of pre-mRNA in vitro.
Authors:C H Kim   D E Ryan   T Marciniec     J Abelson
Affiliation:Division of Biology, California Institute of Technology, Pasadena 91125, USA.
Abstract:We have identified 2'-hydroxyl groups of the U6 phosphate-ribose backbone which are required for reconstitution of splicing activity in U6-depleted yeast extract. To screen the 2'-hydroxyls of yeast U6 at nucleotides 39-88, spanning the conserved central domain, synthetic U6 RNAs were constructed with deoxyribonucleotides incorporated site specifically. Only four individual deoxynucleotide substitutions blocked splicing activity: dA51 (in the ACAGAG sequence), dA62 (next to the AGC triad), and dU70 and dC72 (both in the loop of the 3' intramolecular stem-loop). Native gel analysis revealed that these deoxy-substituted U6 RNAs were competent for assembly of spliceosomes. Interestingly, a 2'-O-methyl substituent at A51, A62, U70 or C72 did not inhibit splicing activity, indicating that the essential 2'-OH groups at these positions in U6 act as hydrogen bond acceptors or neutral coordinated ligands. The requisite 2'-hydroxyls at A62, U70 and C72 show both similarities and differences relative to the positions of essential 2'-hydroxyls of catalytic domain V of group II ribozymes. The identification of the essential 2'-hydroxyls at positions 62, 70 and 72 corroborates that the 3' intramolecular stem-loop in U6 plays an important role in pre-mRNA splicing.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号