首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methylamine Utilization via the N-Methylglutamate Pathway in Methylobacterium extorquens PA1 Involves a Novel Flow of Carbon through C1 Assimilation and Dissimilation Pathways
Authors:Dipti D Nayak  Christopher J Marx
Institution:aOrganismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA;bFaculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA;cBiological Sciences, University of Idaho, Moscow, Idaho, USA;dInstitute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
Abstract:Methylotrophs grow on reduced single-carbon compounds like methylamine as the sole source of carbon and energy. In Methylobacterium extorquens AM1, the best-studied aerobic methylotroph, a periplasmic methylamine dehydrogenase that catalyzes the primary oxidation of methylamine to formaldehyde has been examined in great detail. However, recent metagenomic data from natural ecosystems are revealing the abundance and importance of lesser-known routes, such as the N-methylglutamate pathway, for methylamine oxidation. In this study, we used M. extorquens PA1, a strain that is closely related to M. extorquens AM1 but is lacking methylamine dehydrogenase, to dissect the genetics and physiology of the ecologically relevant N-methylglutamate pathway for methylamine oxidation. Phenotypic analyses of mutants with null mutations in genes encoding enzymes of the N-methylglutamate pathway suggested that γ-glutamylmethylamide synthetase is essential for growth on methylamine as a carbon source but not as a nitrogen source. Furthermore, analysis of M. extorquens PA1 mutants with defects in methylotrophy-specific dissimilatory and assimilatory modules suggested that methylamine use via the N-methylglutamate pathway requires the tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation pathway but not a complete tetrahydrofolate (H4F)-dependent formate assimilation pathway. Additionally, we present genetic evidence that formaldehyde-activating enzyme (FAE) homologs might be involved in methylotrophy. Null mutants of FAE and homologs revealed that FAE and FAE2 influence the growth rate and FAE3 influences the yield during the growth of M. extorquens PA1 on methylamine.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号