首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of Staphylococcus aureus pathogenesis in vitro and in vivo by RAP-binding peptides
Authors:Yang Guang  Cheng Huichai  Liu Chuan  Xue Yanning  Gao Yaping  Liu Nongle  Gao Bo  Wang Dongping  Li Shanru  Shen Beifen  Shao Ningsheng
Institution:Beijing Institute of Basic Medical Sciences, P.O. Box 130 (3), Beijing 100850, China.
Abstract:Staphylococcus aureus cause many diseases by producing toxins, whose synthesis is regulated by quorum-sensing mechanisms. S. aureus secretes a protein termed RNAIII activating protein (RAP) which autoinduces toxin production via the phosphorylation of is target protein TRAP. Mice vaccinated with RAP were protected from S. aureus infection, suggesting that RAP is an useful target for selecting potential therapeutic molecules to inhibit S. aureus pathogenesis. We show here that RAP (native and recombinant) was used to select RAP-binding peptides (RBPs) from a random 12-mer phage-displayed peptide library. Two RBPs were shown to inhibit RNAIII production in vitro (used a marker for pathogenesis). The peptide WPFAHWPWQYPR, which had the strongest inhibitory activity, was chemically synthesized and also expressed in Escherichia coli as a GST-fusion. Both synthetic peptide and GST-fusion peptide decreased RNAIII levels in a dose-dependent manner. The GST-fusion peptide was also shown to protect mice from a S. aureus infection in vivo (tested in a murine cutaneous S. aureus infection model). Our results suggest the potential use of RAP-binding proteins in treating clinical S. aureus infections.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号