首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stilbenecarboxylate biosynthesis: a new function in the family of chalcone synthase-related proteins
Authors:Eckermann Christian  Schröder Gudrun  Eckermann Stefan  Strack Dieter  Schmidt Jürgen  Schneider Bernd  Schröder Joachim
Institution:Institut für Biologie II, Universit?t Freiburg, Sch?nzlestr. 1, D-79104 Freiburg, Germany.
Abstract:Chalcone (CHS), stilbene (STS) synthases, and related proteins are key enzymes in the biosynthesis of many secondary plant products. Precursor feeding studies and mechanistic rationalization suggest that stilbenecarboxylates might also be synthesized by plant type III polyketide synthases; however, the enzyme activity leading to retention of the carboxyl moiety in a stilbene backbone has not yet been demonstrated. Hydrangea macrophylla L. (Garden Hortensia) contains stilbenecarboxylates (hydrangeic acid and lunularic acid) that are derived from 4-coumaroyl and dihydro-4-coumaroyl starter residues, respectively. We used homology-based techniques to clone CHS-related sequences, and the enzyme functions were investigated with recombinant proteins. Sequences for two proteins were obtained. One was identified as CHS. The other shared 65-70% identity with CHSs and other family members. The purified recombinant protein had stilbenecarboxylate synthase (STCS) activity with dihydro-4-coumaroyl-CoA, but not with 4-coumaroyl-CoA or other substrates. We propose that the enzyme is involved in the biosynthesis of lunularic acid. It is the first example of a STS-type reaction that does not lose the terminal carboxyl group during the ring folding to the end product. Comparisons with CHS, STS, and a pyrone synthase showed that it is the only enzyme exerting a tight control over decarboxylation reactions. The protein contains unusual residues in positions highly conserved in other CHS-related proteins, and mutagenesis studies suggest that they are important for the structure or/and the catalytic activity. The formation of the natural products in vivo requires a reducing step, and we discuss the possibility that the absence of a reductase in the in vitro reactions may be responsible for the failure to obtain stilbenecarboxylates from substrates like 4-coumaroyl-CoA.
Keywords:2PS  2-pyrone synthase  CTAL  4-coumaroyltriacetic acid lactone  CHS  chalcone synthase  STS  stilbene synthase  STCS  stilbenecarboxylate synthase  
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号