首页 | 本学科首页   官方微博 | 高级检索  
   检索      


New perspectives on bacterial ferredoxin evolution
Authors:David G George  Lois T Hunt  Lai-Su L Yeh  Winona C Barker
Institution:(1) National Biomedical Research Foundation, Georgetown University Medical Center, 3900 Reservoir Road, 20007 Washington, D.C., N.W., USA
Abstract:Summary Recent evidence indicates that a gene transposition event occurred during the evolution of the bacterial ferredoxins subsequent to the ancestral intrasequence gene duplication. In light of this new information, the relationships among the bacterial ferredoxins were reexamined and an evolutionary tree consistent with this new understanding was derived. The bacterial ferredoxins can be divided into several groups based on their sequence properties; these include the clostridial-type ferredoxins, theAzotobacter-type ferredoxins, and a group containing the ferredoxins from the anaerobic, green, and purple sulfur bacteria. Based on sequence comparison, it was concluded that the amino-terminal domain of theAzotobacter-type ferredoxins, which contains the novel 3Feratio3S cluster binding site, is homologous with the carboxyl-terminal domain of the ferredoxins from the anaerobic photosynthetic bacteria.A number of ferredoxin sequences do not fit into any of the groups described above. Based on sequence properties, these sequences can be separated into three groups: a group containingMethanosarcina barkeri ferredoxin andDesulfovibrio desulfuricans ferredoxin II, a group containingDesulfovibrio gigas ferredoxin andClostridium thermoaceticum ferredoxin, and a group containingDesulfovibrio africanus ferredoxin I andBacillus stearothermophilus ferredoxin. The last two groups differ from all of the other bacterial ferredoxins in that they bind only one FeratioS cluster per polypeptide, whereas the others bind two. Sequence examination indicates that the second binding site has been either partially or completely lost from these ferredoxins.Methanosarcina barkeri ferredoxin andDesulfovibrio desulfuricans ferredoxin II are of interest because, of all the ferredoxins whose sequences are presently known, they show the strongest evidence of internal gene duplication. However, the derived evolutionary tree indicates that they diverged from theAzotobacter-type ferredoxins well after the ancestral internal gene duplication. This apparent discrepancy is explained by postulating a duplication of one halfchain sequence and a deletion of the other halfchain. TheClostridium thermoaceticum andBacillus stearothermophilus groups diverged from this line and subsequently lost one of the FeratioS binding sites.It has recently become apparent that gene duplication is ubiquitous among the ferredoxins. Several organisms are now known to have a variety of ferredoxins with widely divergent properties. Unfortunately, in only one case are the sequences of more than one ferredoxin from the same organism known. Thus, although the major features of the bacterial ferredoxin tree are now understood, a complete bacterial phylogeny cannot be inferred until more sequence information is available.
Keywords:Origin of life  Ancestral sequence  Sequence homology  Protein evolution  Gene duplication  Gene transposition  Electron transport proteins  FeratioS clusters" target="_blank">gif" alt="ratio" align="BASELINE" BORDER="0">S clusters
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号