Protein degradation in E. coli: the lon mutation and bacteriophage lambda N and cII protein stability |
| |
Authors: | S Gottesman M Gottesman J E Shaw M L Pearson |
| |
Affiliation: | Laboratory of Molecular Biology National Cancer Institute National Institutes of Health Bethesda, Maryland 20205 USA;Department of Medical Genetics University of Toronto Toronto, Ontario M5S 1A8 USA |
| |
Abstract: | The Ion gene of E. coli controls the stability of two bacteriophage lambda proteins. The functional half-life of the phage N gene product, measured by complementation, is increased about 5-fold in Ion mutant strains, from 2 min to 10 min. The chemical half-life of N protein, determined by its disappearance on polyacrylamide gels following pulse-chase labeling, increases about three-fold in Ion cells. In contrast to its effect on the N protein, the Ion mutation produces a 50% decrease in the chemical half-life of cII protein. The decay rate of many other phage proteins, including the unstable gene O product, remains unaffected by a host Ion defect. A Ion mutation alters lambda physiology in two ways. First, upon infection, the phage enters the lytic pathway predominantly. This may result from the deficiency of cII protein caused by its decreased stability, since cII product is required for establishment of lysogeny. Second, brief thermal induction of a Ion (lambda c1857) lysogen leads irreversibly to lysis; repression cannot be restablished and the treated cells are committed to forming infective centers. Although N product is normally required for rapid commitment, Ion lysogens become committed more rapidly than Ion+ lysogens, even in the absence of N function. These results identify for the first time native proteins whose stability is affected by the Lon proteolytic pathway. They also indicate that the Lon system may be important in regulating gene expression in E. coli. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|