首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ethylene antagonizes the inhibition of germination in Arabidopsis induced by salinity by modulating the concentration of hydrogen peroxide
Authors:Yingchao Lin  Jiajia Wang  Yuangang Zu  Zhonghua Tang
Institution:1. Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China
Abstract:The capacity of plants to achieve successful germination and early seedling establishment under high salinity is crucial for tolerance of plants to salt. The gaseous hormone ethylene has been implicated in modulating salt tolerance, but the detailed role of how ethylene modulates the response of early seedling establishment to salt is unclear. To better understand the role of the ethylene signal transduction pathway during germination and seedling establishment, an ethylene insensitive mutation (ein2-5) and an ethylene sensitive mutation (ctr1-1) of Arabidopsis were analyzed under saline conditions and compared with the wild type plant (Col-0) as control. High salinity (>100?mM NaCl) inhibited and delayed germination. These effects were more severe in the ethylene insensitive mutants (ein2-5) and less severe in the constitutive ethylene sensitive plants (ctr1-1) compared with Col-0 plants. Addition of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or inhibitors of ethylene action implied that ethylene was essential for early seedling establishment under normal and saline conditions. Salt stress increased the endogenous concentration of hydrogen peroxide (H2O2) in germinating seeds and ACC reduced its concentration. Our results suggest that ethylene promotes germination under salinity by modulating the endogenous concentration of H2O2 in germinating seeds. These findings demonstrate that ethylene is involved in regulating germination as an initiator of the process rather than consequence, and that ethylene promotes germination by modulating the endogenous concentration of H2O2 in germinating seeds under salinity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号