首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The gut microbiome composition and degradation enzymes activity of black Amur bream (Megalobrama terminalis) in response to breeding migratory behavior
Authors:Yaqiu Liu  Xinhui Li  Jie Li  Weitao Chen
Institution:1. Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou China ; 2. Scientific Observing and Experimental Station of Fishery Resources and Environment in Middle and Lower Reaches of Pearl River, Ministry of Agriculture and Rural Affairs, Guangzhou China
Abstract:Black Amur bream (Megalobrama terminalis), a dominant species, resides in the Pearl River basin, known for its high plasticity in digestive ability. During spawning season, M. terminalis individuals with large body size and high fertility undergo a spawn migratory phase, while other smaller individuals prefer to settlement over migration. It is well known that gut microbial community often underpins the metabolic capability and regulates a wide variety of important functions in fish. However, little was known about how the gut microbiomes affect fish breeding migration. To investigate the variations in the gut microbiome of M. terminalis during the migration, we used high‐throughput 16S rRNA gene sequencing to reveal the distinct composition and diversity of the whole gut microbiome of migrated and nonmigrated population during period of peak reproduction, respectively. Our results indicated that nonmigrated population in estuary had a higher alpha diversity than that of migrated population in main stem. Additionally, an obvious abundant taxa shift between the gut microbiota community of nonmigrated and migrated M. terminalis was also observed. Change of dominant gut taxa from nonmigrated to migrated population was thought to be closely related to their degradation enzymes. Our results suggested that amino acid metabolism and lipid metabolism in migrated population were higher than that in nonmigrated population, providing a line of evidence for that M. terminalis change from partial herbivorous to partial carnivorous diet during breeding migration. We further concluded that, in order to digest foods of higher nutrition to supply energy to spawning migration, M. terminalis regulate activities of the gut microbiome and degradation enzymes, considered to be a key physiological strategy for reproduction.
Keywords:enzymes  gut microbial community  Megalobrama terminalis  metabolism  migration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号