首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method
Authors:Pang Y P
Institution:Mayo Clinic Cancer Center, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA. pang@mayo.edu
Abstract:I report herein two 2.0 ns (1.0 fs time step) MD simulations of two zinc complexes bridged by a hydroxide in phosphotriesterase (PTE) employing the nonbonded method and the cationic dummy atom method that uses virtual atoms to impose orientational requirement for zinc ligands. The cationic dummy atom method was able to simulate the four-ligand coordination of the two zinc complexes in PTE. The distance (3.39 +/- 0.07A) between two nearby zinc ions in the time-average structure of PTE derived from the MD simulation using the cationic dummy atoms matched that in the X-ray structure (3.31 +/- 0.001A). Unequivocally, the time-average structure of PTE was able to fit into the experimentally determined difference electron density map of the corresponding X-ray structure. The results demonstrate the practicality of the cationic dummy atom method for MD simulations of zinc proteins bound with multiple zinc ions. In contrast, a 2.0 ns (1.0 fs time step) MD simulation using the nonbonded method revealed a striking difference in the active site between the X-ray structure and the time-average structure that was unable to fit into the density map of PTE. The results suggest that caution should be used in the MD simulations using the nonbonded method.
Keywords:,phosphotriesterase ,coordination chemistry,metalloproteins,metal–metal interactions,molecular dynamics,zinc
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号