首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cellular response to magnetic nanoparticles "PEGylated" via surface-initiated atom transfer radical polymerization
Authors:Hu Feixiong  Neoh Koon Gee  Cen Lian  Kang En-Tang
Institution:Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260.
Abstract:A new method to PEGylate magnetic nanoparticles with a dense layer of poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) by surface-initiated atom transfer radical polymerization (ATRP) is reported. In this approach, an initiator for ATRP was first immobilized onto the magnetic nanoparticle surface, and then P(PEGMA) was grafted onto the surface of magnetic nanoparticle via copper-mediated ATRP. The modified nanoparticles were subjected to detailed characterization using FTIR, XPS, and TGA. The P(PEGMA)-immobilized nanoparticles dispersed well in aqueous media. The saturation magnetization values of the P(PEGMA)-immobilized nanoparticles were 19 emu/g and 11 emu/g after 2 and 4 h polymerization respectively, compared to 52 emu/g for the pristine magnetic nanoparticles. The response of macrophage cells to pristine and P(PEGMA)-immobilized nanoparticles was compared. The results showed that the macrophage cells are very effective in cleaning up the pristine magnetic nanoparticles. With the P(PEGMA)-immobilized nanoparticles, the amount of nanoparticles internalized into the cells is greatly reduced to <2 pg/cell over a 5 day period. With this amount of nanoparticles uptake, no significant cytotoxicity effects were observed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号