首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Morphological and biochemical differentiation of limb bud cells cultured in chemically defined medium
Authors:Kenichiro Karasawa  Koji Kimata  Kenichiro Ito  Yukinobu Kato  Sakaru Suzuki
Institution:Department of Chemistry, Faculty of Science, Nagoya University, Nagoya 464, Japan
Abstract:When chick limb buds were isolated from stage 22–23 embryos and cultured in chemically defined medium “BGJb,” the explants grew and, after about 9 days, showed good chondrogenesis of recognizable cartilage segments. Cartilage-type proteoglycan (termed PCS-H) was not synthesized during early days of culture, but by Day 9, it became a major proteoglycan constituent of the tissue. Freshly dissociated limb bud cells, when plated as monodispersed cultures at a density of 7 × 106 cells/ml of BGJb, did not undergo chondrogenic differentiation and, instead, assumed the appearance of unhealthy or degenerated cells. During 9 days of culture, even though proteoglycans were synthesized, they were nevertheless of much smaller molecular size than PCS-H. When limb bud cells were cultured as a pellet containing 7 × 106 cells in 1 ml of BGJb, a more tightly packed aggregate of about 2 × 106 cells appeared in an inner region of the pullet during the first 24 hr of culture, and by Day 12 the aggregate had differentiated into a cartilage nodule surrounded by a thin layer of what appear to be ectodermal cells. As the conversion of aggregate into cartilage nodule progressed, newly formed proteoglycans gradually became more like cartilage-type proteoglycans, and by Day 12 they had many chemical and physical characteristics similar to those of the proteoglycans isolated from fully differentiated cartilages. The results indicate that the initial association of limb bud cells is an important factor for the chondrogenesis in BGJb and further suggest that the tight binding of the cell surfaces to one another may directly or indirectly stimulate the mechanism of synthesis of cartilage-type proteoglycans.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号