首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isomaltose production by modification of the fructose-binding site on the basis of the predicted structure of sucrose isomerase from "Protaminobacter rubrum"
Authors:Lee Hyeon Cheol  Kim Jin Ha  Kim Sang Yong  Lee Jung Kul
Institution:BioNgene Co., Ltd., 10-1, 1 Ka, Myungryun-Dong, Jongro-Ku, Seoul 110-521, Republic of Korea. churry@biongene.com
Abstract:"Protaminobacter rubrum" sucrose isomerase (SI) catalyzes the isomerization of sucrose to isomaltulose and trehalulose. SI catalyzes the hydrolysis of the glycosidic bond with retention of the anomeric configuration via a mechanism that involves a covalent glycosyl enzyme intermediate. It possesses a (325)RLDRD(329) motif, which is highly conserved and plays an important role in fructose binding. The predicted three-dimensional active-site structure of SI was superimposed on and compared with those of other alpha-glucosidases in family 13. We identified two Arg residues that may play important roles in SI-substrate binding with weak ionic strength. Mutations at Arg(325) and Arg(328) in the fructose-binding site reduced isomaltulose production and slightly increased trehalulose production. In addition, the perturbed interactions between the mutated residues and fructose at the fructose-binding site seemed to have altered the binding affinity of the site, where glucose could now bind and be utilized as a second substrate for isomaltose production. From eight mutant enzymes designed based on structural analysis, the R(325)Q mutant enzyme exhibiting high relative activity for isomaltose production was selected. We recorded 40.0% relative activity at 15% (wt/vol) additive glucose with no temperature shift; the maximum isomaltose concentration and production yield were 57.9 g liter(-1) and 0.55 g of isomaltose/g of sucrose, respectively. Furthermore, isomaltose production increased with temperature but decreased at a temperature of >35 degrees C. Maximum isomaltose production (75.7 g liter(-1)) was recorded at 35 degrees C, and its yield for the consumed sucrose was 0.61 g g(-1) with the addition of 15% (wt/vol) glucose. The relative activity for isomaltose production increased progressively with temperature and reached 45.9% under the same conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号