Microscopic origin of gating current fluctuations in a potassium channel voltage sensor |
| |
Authors: | Freites J Alfredo Schow Eric V White Stephen H Tobias Douglas J |
| |
Affiliation: | Department of Chemistry, University of California, Irvine, California, USA. |
| |
Abstract: | Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-μs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |