首页 | 本学科首页   官方微博 | 高级检索  
     


Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition
Authors:Dipanwita Banerjee  Hisae Tateishi-Karimata  Tatsuya Ohyama  Saptarshi Ghosh  Tamaki Endoh  Shuntaro Takahashi  Naoki Sugimoto
Affiliation:FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan;FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
Abstract:The stability of Watson–Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR–Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号