首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photorespiratory Amino Donors, Sucrose Synthesis and the Induction of CO2 Fixation in Barley Deficient in Glutamine Synthetase and/or Glutamate Synthase
Authors:BLACKWELL  R D; MURRAY  A J S; LEA  P J; JOY  K W
Abstract:Murray, A. J. S., Black well, R. D., Lea, P. J. and Joy, K.W. 1988. Photorespiratory amino donors, sucrose synthesis andthe induction of CO2 fixation in barley deficient in glutaminesynthetase and/or glutamate synthase.—J. exp. Bot. 39:845–858. A number of mutants of barley have been produced which lackboth chloroplastic glutamine synthetase and ferredoxin-dependentglutamate synthase activities. The plants accumulated ammoniato the same extent as mutants deficient in only glutamine synthetasebut shared the gas-exchange characteristics of the glutamatesynthase deficient parent. These mutants have been used to demonstratedirectly the ability of alanine to ameliorate the dramatic dropin fixation rate normally exhibited by glutamate synthase deficientmutants on transfer to photorespiratory conditions. Immediatelyafter transfer to air, the mutants deficient in glutamate synthaseactivity demonstrated a reduced ability to incorporate 14C derivedfrom 14CO2 into sucrose. This effect was, however, dependenton the previous induction of CO2 fixation. Use of 14CO2 revealedthat the induction phase of CO2 fixation was altered in allthree mutants. Neither of the parents nor the double mutantaccumulated sucrose in air under conditions which promote sucroseaccumulation by the wild type. The implications of these resultsfor photosynthesis and the control of sucrose synthesis arediscussed. Key words: Photorespiratory barley mutant, amino donors, sucrose, GS, glutamate synthase.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号