首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases
Authors:Zhao Xuan  Nilges Mark J  Lu Yi
Institution:Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
Abstract:The effects of chloride on the redox properties of an engineered binuclear heme-copper center in myoglobin (Cu(B)Mb) were studied by UV-vis spectroelectrochemistry and EPR spectroscopy. A low-spin heme Fe(III)-Cu(I) intermediate was observed during the redox titration of Cu(B)Mb only in the presence of both Cu(II) and chloride. Upon the first electron transfer to the Cu(B) center, one of the His ligands of Cu(B) center dissociates and coordinates to the heme iron, forming a six-coordinate low-spin ferric heme center and a reduced Cu(B) center. The second electron transfer reduces the ferric heme and causes the release of the coordinated His ligand. Thus, the fully reduced state of the heme-copper center contains a five-coordinate ferrous heme and a reduced Cu(B) center, ready for O(2) binding and reduction to water to occur. In the absence of a chloride ion, formation of the low-spin heme species was not observed. These redox reactions are completely reversible. These results indicate that binding of chloride to the Cu(B) center can induce redox-dependent structural changes, and the bound chloride and hydroxide in the heme-copper center may play different roles in the redox-linked enzymatic reactions of heme-copper oxidases, probably because of their different binding affinity to the copper center and the relatively high concentration of chloride under physiological conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号