首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss
Authors:Richard Stéphane  Torabi Nazi  Franco Gladys Valverde  Tremblay Guy A  Chen Taiping  Vogel Gillian  Morel Mélanie  Cléroux Patrick  Forget-Richard Alexandre  Komarova Svetlana  Tremblay Michel L  Li Wei  Li Ailian  Gao Yun Jing  Henderson Janet E
Institution:Stéphane Richard, Nazi Torabi, Gladys Valverde Franco, Guy A Tremblay, Taiping Chen, Gillian Vogel, Mélanie Morel, Patrick Cléroux, Alexandre Forget-Richard, Svetlana Komarova, Michel L Tremblay, Wei Li, Ailian Li, Yun Jing Gao, and Janet E Henderson
Abstract:The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68−/− mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68−/− mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68−/− mice. Sam68−/− bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68−/− littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68−/− mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68−/− mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号