首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Testosterone metabolism by cytochrome P-450 isozymes RLM3 and RLM5 and by microsomes. Metabolite identification
Authors:K C Cheng  J B Schenkman
Abstract:Testosterone metabolism by cytochrome P-450 isozymes RLM3 and RLM5 in a reconstituted system and by rat liver microsomes was examined. Eleven metabolites were detected. Two of these, found in spots 2 and 4 of a thin layer plate, were only formed by the rat liver microsomes and may represent reductive metabolites of testosterone. A number of monohydroxy metabolites were conclusively identified by gas chromatography-mass spectrometry. These include the 2-, 6 beta-, 7 alpha-, and 16 alpha-hydroxy isomers. Liver microsomes formed the 2 alpha- and 2 beta-epimers in a 1:2 ratio and both co-chromatographed with a third reduced metabolite in thin layer plate spot 4. In contrast with RLM5 about 90% of the 2-hydroxy isomer was the 2 alpha-epimer. RLM3 did not perform the 2-hydroxylation in detectable amounts. The 6 beta-isomer was a major metabolite of RLM3 and microsomes, but a minor product of metabolism by RLM5. In contrast, the 7 alpha-isomer was a minor metabolite of RLM3, was not formed by RLM5, and was a major microsomal metabolite. Hydroxylation at position 16 alpha was a major activity of RLM5 and the heterogeneous microsomal cytochromes, but with RLM3 it was a minor reaction. One new metabolite was found which appeared to be hydroxylated in the D-ring, had a mass spectrum different from both 16 alpha- and 16 beta-hydroxytestosterone, and was tentatively identified as a 15-hydroxy isomer. In agreement with the literature, androstene-3,17-dione was found to be an oxidative metabolite of testosterone by both microsomes and purified cytochrome P-450. It was a major metabolite of RLM5 but was not produced by RLM3. Studies with 18O2 and H218O conclusively show that oxidation of testosterone at C-17 does not involve transient incorporation of an oxygen atom in this position. A mechanism is suggested whereby cytochrome P-450 acts as a peroxidase in the formation of androstenedione.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号