首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acidosis and Ca2+ distribution in myocardial tissue of flounder and rat
Authors:H Gesser and O Poupa
Institution:(1) Department of Zoophysiology, University of Aarhus, DK-8000 Aarhus C, Denmark;(2) Faculty of Medicine, Department of Clinical Physiology, University of Gothenburg, Sahlgrenska Sjukhuset, S-413 45 Gothenburg, Sweden
Abstract:Summary The effect of acidosis on the myocardial Ca2+ distribution was examined at 15°C in ventricular strips of the flounder (Platichthys flesus) and at 30°C in atrial strips of the rat (Rattus norvegicus).Lowering the Ringer pH from 7.6 to 6.9 by increasing its CO2 (flounder 2% to 12%, rat 4% to 14%), resulted in an elevated Ca2+ efflux in resting strips as well as in strips stimulated (12/min) to contraction. A decrease in pH of the Ringer used for the flounder myocardium by a lowering of bicarbonate (30 mM to 5 mM) also resulted in an elevation of the Ca2+ efflux, but the effect was smaller than that produced by an increased CO2.With 11 mM Ca2+ and 10 mM EGTA added to the Ringer to reduce the amount of45Ca2+ bound to extracellular sites, an increased CO2 with a concomitant drop in Ringer pH resulted in an increased Ca2+ efflux in both myocardia. The Ca2+ efflux was only marginally elevated in the flounder myocardium and unchanged in that of rat when the same drop in Ringer pH was produced with a lowering in bicarbonate.In a nominally Ca2+-free Ringer with 0.1 mM EGTA the45Ca2+ efflux was stimulated for both myocardia by an increase in CO2.The flounder myocardium was exposed to high CO2 in a nominally Na+, Ca2+-free Ringer and again the45Ca2+ efflux increased. After a return to Na, Ca and low CO2 in the Ringer, a higher efflux persisted in the strips being subjected to a high CO2 than in the controls.The Ca2+ uptake rate was about the same at high and low CO2 for both myocardia.Based on these results the measured increase in Ca efflux following an increase in CO2 or a decrease in bicarbonate probably results from an elevated cytoplasmatic Ca2+ activity. It seems unlikely that an increased uptake rate of Ca2+ or a direct stimulation of Ca2+ transporting mechanisms in the cell membrane are responsible for the change.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号