Utility of nuclear DNA intron markers at lower taxonomic levels: phylogenetic resolution among nine Tragelaphus spp |
| |
Authors: | Willows-Munro Sandi Robinson Terence J Matthee Conrad A |
| |
Affiliation: | Evolutionary Genomics Group, Department of Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. sm2@sun.ac.za |
| |
Abstract: | Phylogenetic relationships among the nine spiral-horn antelope species of the African bovid tribe Tragelaphini are controversial. In particular, mitochondrial DNA sequencing studies are not congruent with previous morphological investigations. To test the utility of nuclear DNA intron markers at lower taxonomic levels and to provide additional data pertinent to tragelaphid evolution, we sequenced four nuclear DNA segments (MGF, PRKCI, SPTBN, and THY) and combined these data with mitochondrial DNA sequences from three genes (cytochrome b, 12S rRNA, and 16S rRNA). Our molecular supermatrix comprised 4682 characters which were analyzed independently and in combination. Parsimony and model based phylogenetic analyses of the combined nuclear DNA data are congruent with those derived from the analysis of mitochondrial gene sequences. The corroboration between nuclear and mtDNA gene trees reject the possibility that genetic processes such as lineage sorting, gene duplication/deletion and hybrid speciation account for the conflict evident in the previously published phylogenies. It suggests rather that the morphological characters used to delimit the Tragelaphid species are subject to convergent evolution. Divergence times among species, calculated using a relaxed Bayesian molecular clock, are consistent with hypotheses proposing that climatic oscillations and their impact on habitats were the major forces driving speciation in the tribe Tragelaphini. |
| |
Keywords: | Bovidae Tragelaphini Systematics Phylogeny Molecular clock |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|